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* 
THE SCREENING EFFECT OF OBSTACLES 

WITH A STRAIGHT EDGE 

SUMMARY 

The fundamentals of the mathematical treatment of a 
special diffraction problem are outlined and numerical values 
a re  presented. It was not the purpose to repeat mathemati- 
cal hardware and be complete, but rather to draw attention 
to various assumptions and approximations. It is not the illu- 
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THE SCREENING EFFECT OF OBSTACLES 
WITH A STRAIGHT EDGE 

PROBLEM 

A sensitive receiving antenna should be positioned in such a way that it is 
the least possible affected by noise, in particular, man-made noise. Increasing 
the distance from the noise sources is the most obvious remedy, but there is 
always a distance where no further increase is possible. In this case the in- 
fluence of the noise can be diminished by screening, either by a mountain range 
o r  an artificial screen. 

In the following the diffraction pattern behind a screen is discussed and 
numerical values are given. Then a method is outlined to deal with the diffrac- 
tion pattern of two screens. 

DIFFRACTION PATTERN OF A HALF PLANE 

First ,  solutions of this problem are discussed and then it is shown that 
these can be applied to the shielding effect of a mountain. 

The Classical Treatment 

The solution of diffraction problems as a boundary problem is very difficult 
and only successful for special cases. 

However, a treatment of the diffraction problem on the basis of Huygens' 
principle is simpler, but not exact. Huygen states that every point of a wave may 
be considered to be a source of secondary spherical waves. The mathematical 
formulation of this principle is due to Kirchhoff,' (p. 378) by means of Green's 
theorem. This theory is scalar. That means that only a scalar quantity, U, is 
considered. U is called light disturbance and has no dimension. U is propor- 
tional to the field strength, or - more essential - U2 is proportional to the in- 
tensity. Further, U has to satisfy the wave equation. For monochromatic radi- 
ation U is usually split into a time and space dependent factor. 
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* 
When one is interested only in the intensity, the knowledge of u is sufficient. 

The celebrated formula of Kirchhoff' expresses the disturbance up at a point 
P as the integral of the light disturbance over the boundary of a region contain- 
ing P :  

1 dS 
u = (1/4n) js - j k r )  g r a d  - u g r a d  e x p  (- j k r )  

r r P 

k = 2 ~ / w a v e l e n g t h  h 

dS 

A basic remark is necessary before applying formula (1): This formula 
would give the exact result i f  we knew the boundary condition. Such knowledge 
would already be a solution of the boundary problem where we have the more 
basic conditions for the horizontal and vertical components of electric and mag- 
netic field strength. Kirchhoff made the assumption that the disturbance in the 
free aperture is that which would exist if  the screen were not present and that u 
and grad u are zero on the screen itself. This is the reason why no property of 
the material of the screen does enter into the solution. Also polarization cannot 
be attacked by this theory, because we deal only with the scalar disturbance u 
(proportional to the field strength) and for this reason nothing is said about the 
orientation of the field strength. 

The two mentioned assumptions of Kirchhoff a r e  physically justified for 
sufficiently small wavelengths. It is experimentally stated that shorter wave- 
lengths cause less diffraction. So the assumption that u equals zero is nearly 
fulfilled. The field in the aperture is affected by the presence of the screen, 
but certainly the most within the order of magnitude of the wavelength from the 
edge of the aperture. So Kirchhoff's assumption in the aperture fits better for 
small wavelengths. 
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Simplified Huygens' principle: From Lrchhoff's formula (1) a simple mathe- 
matical expression for Huygens' principle can be derived. This is only valid for 
plane screens and under the assumption: r > >  wavelength h 

reference 2, page 201 

j/ P 

UP 

( u  exp jk r ) / r  is a spherical wave with the excitationu . cos (n , r )  da is 
the projected area of du viewed from P. The factor j h is not easily explained, 
but it makes the dimension of the right and left sides equal (no dimension). 

This simplified principle is sufficient to solve numerous diffraction problems 
in a surprisingly good way. 

On the basis of the mathematical treatment, a classification of the diffrac- 
tion is done. 

F r  auenhofe r Diffraction 

A mathematical condition for this type of diffraction is that the dimension 
of the diffraction opening is small, compared with the distance rp as  well as  
the distance ro . This condition must be fulfilled because a mathematical ex- 
pression is expanded. 
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If rQ and rp approach infinity, all t e rms  of the series expansion higher than 
that of the first degree vanish and in this particular case one speaks of Frauen- 
hofer diffraction. 

Fresnel Diffraction . 
When the condition rQ +CO and rp + co is not fulfilled, one speaks of Fresnel 

diffraction. For the mathematical treatment the condition, rQ , rp >>  d (dimen- 
sion of the diffraction opening) should be valid, because the same mathematical 
expression as mentioned in Frauenhofer Diffraction is expanded, to the te rm of 
second degree only. By a proper choice of the coordinate system the term of 
first degree vanishes. By all this a not too complicated mathematical treatment 
is possible. It is also obvious that the achieved solutions are more o r  less per- 
fect approximations. 

The diffraction pattern of a half plane (or diffraction of the straight edge) is 
derived from the diffraction pattern of a rectangular diffraction opening as a . 

limiting case. The conditions rQ , rp >>  d are not fulfilled anymore, but never- 
theless a solution is obtained. Omitting any justification of the various limiting 
processes which seem to exclude each other, it is surprising that the obtained 
solution is in good agreement with the rigorous solution obtained by Sommerfeld. 

Rigorous Solution 

Sommerfeld (reference 2,  p. 247) solved this problem as a boundary problem. 
The solution has  to satisfy the Maxwell equations everywhere and it has to satisfy 
the boundary condition (Et , ,  , H t a ,  continuity, etc.) on every surface. Further, 
the solution has to correspond to a given type of excitation (e.g., point source). 
The assumed screen is a half plane, infinitely thin, but nevertheless opaque and 
conducting. This is unrealistic and the assumptions arbitrary, but the solution 
is correct in the mathematical sense. The solution has two advantages. First, 
it takes into account polarization, second, it is valid for the whole space. 

Sommerfeld generalized the above-mentioned solution for a "black'' screen. 
But essentially this is not free of arbitrariness (reference 2 ,  p. 265). No par- 
ticular work has been done on this problem, but the applied method is ingenious. 
An infinitive sheeted Riemann surface is used. The cut S of the top sheet rep- 
resents the screen. Every energy falling onS disappears in the infinitive num- 
ber  of sheets. 
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The Black, or Reflecting, Screen 

The following is copied from reference 2 ,  pages 205 and 246: 

F. Black o r  Reflecting Screen 

In the theory of diffraction it is customary to speak of a black 
screen. However, in actual diffraction experiments one finds that 
the physical nature of the screen in general does not affect the re- 
sults noticeably. Thus a piece of tin foil into which a narrow slit 
has been scratched yields the same diffraction pattern regardless 
of whether the foil has been left reflecting or  whether it has been 
blackened. Therefore we need only describe the screen as opaque 
in order to specify that in spite of arbitrary thinness it shall trans- 
mit no light. In the Maxwell theory such a screen would have to 
be defined as a material possessing an infinite conductivity. Such 
a screen would not be black but would be perfectly reflecting; its 
reflecting power would be r = 1. On the other hand, black, that 
is completely non-reflecting material, cannot even be defined in 
the Maxwell theory; blackening is not a property of the material 
but is a property of the surface. We shall take this into account 
in Sec. 38 where we shall t ry  to describe the property "black" 
mathematically. Our presentation of Huygens' principle shows 
that this property is not essential to the theory of diffraction. 
Only very refined experiments can reveal the nature of the mate- 
rial of which the diffracting screen is composed. 

The material composition of the screen, of course, affects the 
light field only in the immediate vicinity of the edge of the opening, 
that is ,  only within a distance of a few wavelengths from the edge. 
If the opening is fairly large, this  edge zone is negligible com- 
pared to the rest  of the aperture. This explains why the crude as- 
sumptions (4 a, b) o r  ( G  a,  b), which can of course be valid only 
outside the edge zone, have been so eminently successful. Devia- 
tions from Huygens' principle a re  to be expected with the usual 
methods of okservation only for extremely small openings which 
are of the order of magnitude of a wavelength in size (or for ex- 
perimental arrangements which correspond to such small openings 
in accordance with the similarity law of Sec. 35 E). 

We have assumed the diffraction screen to be infinitely thin 
and at the same time opaque. Therefore these results cannot be 
realized experimentally. Under a microscope even the edge of a 
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razor looks more like a parabolic cylinder than like a sharp half- 
plane. However, it is very remarkable that the patterns on precise 
diffraction photographs (see for instance, Arkadiew loc. cit. p. 220) 
exhibit almost no dependence on the material and shape of the dif- 
fraction edge. Even a bent glass plate whose radius of curvature 
is several meters and which may o r  may not be blackened yields 
essentially the same diffraction fringes as the edge of a razor. 
In each case the pattern is that shown in Fig. 75. 

One remark about the black screen should be added. Why cannot it be de- 
fined within the Maxwell theory? The condition is, that all incident energy has 
to be absorbed. One could try to achieve this by establishing the condition, that 
on the surface a current is flowing in such a way, that it neutralizes the field 
there, and so no reflection is possible (etc.). But such a condition assumes al- 
ready that the exact boundary values a re  known and this is not true. This is 
exactly what should be evaluated. 

Solutions 

Fresnel Diffraction - A parallel wave is normal incident on half plane. 

The solution is: I u/u0 I = I F(m) t F(w) I /JF 

I u/u0 1 is the ratio of the 
wave. 

(3) 

J k r / 2  s i n  6 k = 2 v / h  A =  w a v e l e n g t h  

field strength in P to the field strength of the incident 
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The Sommerfeld Solution - A monochromatic, linearly polarized wave is 
incident on the front surface at an angle a.  The screen is infinitive thin, opaque 
and conducting. The figure below shows the meaning of the symbols. 

- - 7SHADOW BOUNDARY 
c -- INCIDENT m 

P SHADOW REGION WAVE - 
"0 

8 = w - ( + - a )  

(reference 2, p. 247) 

G 

The solution is: 

J ' e x p  ( j Z 7 ' ) d . T  I ' e x p ( j q r 2 ) d 7  
'- m .-a3 

(4) 

k = 2rr/wavelength A, -180" 5 a 5 + 180" 

I u/u0  I is the ratio of the field strength in P to the field strength of the incident 
wave. 

The upper sign in (4), (5), corresponds to the case where the electrical 
field strength oscillates parallel to the edge of the screen, the lower sign in (4) 
corresponds to the case where the  electrical field strength oscillates perpen- 
dicular to the screen edge. 

The formula (4) can be discussed for various regions of the diffraction pat- 
tern and simpler expressions result. 

Shadow Region - With the assumption r >>  A and for large values of p, 
and p2 ,  formula (4) can be written as follows: 
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This formula is not valid for the shadow boundary because p, becomes zero. 

The field strength decreases as 1/Jf o r  the intensity decreases as  1 / r .  
This is the same behavior a s  a cylindric wave emitted from the edge. 

Shadow Boundary - Introducing the angle 6 defined in the figure above, S, 
becomes : 

p, = 2 ~  sin{;} p, = 2 ~ k r / n s i n { $ - a }  

If I pll is small ( < < I ) ,  the second term of formula (4) can be neglected, be- 
cause p2 is much more negative ( U  and 1 8 0 ~  must be reasonably larger than 6). 
Formula (4) then becomes: 

The condition that p1 is small can be fulfilled always, also for large k r ,  
provided that 6 is small enough. This is exactly the condition for the shadow 
boundary . 

Formally, formula (6) agrees with formula (3), but the arguments a re  
different: 
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For small b this is only a difference of the third order since 

b3  s i n  8 8 - - 
6 

6 << 1 

b 3  2 s i n  X/2 - b - - 
24 

So the Sommerfeld solution and the Fresnel solution a re  surprisingly well 
in the shadow boundary. 

A conclusion, important from the practical point of view, can be drawn from 
(6) and (3). Only the angle 6 appears in the solution. For this reason the diffrac- 
tion pattern of the shadow boundary does not depend on the position of the screen 
(angle a ). Also the solution does not depend on polarization. 

Since (6) and ( 3 )  are  approximations, all this is not true in the very exact 
sense. 

Numerical Solutions 

Figures 1 and 2 a re  calculated on the basis of the Sommerfeld solution (5). 
The wave (2000 Mc) is incident from the left. The position of the screen (angle 
a)  is different in Figures 1 and 2, but the diffracting edge is at the same position 
(0,O). The attenuation is calculated for certain points (black dots) for horizontal 
and vertical polarization and expressed in decibels. The diffracting edge acts 
like the emitting region of a cylindrical wave; this wave interferes with the in- 
cident wave in the region ( b  > 0) and causes intensity minima and maxima; along 
the line 8 = + 3 O  the rough position of this extrema are  indicated by (l.MIN, etc.). 
Keeping r constant and increasing 8 ,  we pass through a first maxima, a first 
minimum (noted a s  1.MIN in Figures 1 and 2), a second maxima, a second minima 
(2.MIN), etc. 

For a comparison the results (Figure 3 ) ,  obtained by formula (6) a r e  pre- 
sented in the same manner as  Figures 1 and 2. 

This solution is only valid for the shadow boundary while formula (5) (Fig- 
ures  1 and 2) is valid for the shadow region with exception of the shadow bound- 
ary. Polarization and the position of the screen do not enter in this  solution. 
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Comparison of Figures 1 and 2 with Figure 3 shows that the two solutions 
f i t  together very well and overlap in a surprisingly good manner. 

Figures 4, 5, 6 and 7 give the same type of graphical representation of the 
diffraction pattern as Figure 3, but for various frequencies, (1000, 300, 100, 30 
Mc). The intensity in the geometrical shadow increases with decreasing frequency. 

Amlication of the Obtained Solution 

With some approximations, the  obtained solution can be applied to the prob- 
lem outlined in PROBLEM. Let us  consider manmade noise as a plane wave 
with constant amplitude propagating parallel to the surface of the earth. 

INCIDENT 
WAVE - 

A 

This is an approximation. First the intensity of the noise varies essentially. 
This means that also lower frequency components must be present in the detec- 
tion equipment. Lower frequencies show a stronger diffraction. If the intensity 
of the incident and diffracted wave are determined by the same equipment and 
lu/u,/ is determined, then this value is larger than the theoretical value for an 
incident wave, with constant amplitude and being strictly monochromatic. 

Second, the incident wave cannot be a plane wave because of the earth, desig- 
nated by A in the figure above. 

Disregarding these differences, the diffraction pattern is the same as shown 
before, i f  the angle between the slope B of the mountain and r (y < 10') is not too 
small, (e.g., not smaller than = 20'). 

The earth (part C on the figure above) has essentially a reflecting effect 
since y is small. The reflected wave superposes with the diffracted. However, 
the antenna under consideration has a pronounced directivity in the forward 
direction, so that the radiation can only be picked up by the less sensitive side 
loops. This influence could be further diminished by suitable shields D on C. 

Further a mountain is opaque for  UHF waves (300-3000 Mc). 
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TWO SCREENS 

The question arises in how far the diffracted wave can be shielded by a 
second shield as it is shown in the figure below: 

By means of Babinet’s principle, Huygens’ principle and applying (4), a solu- 
tion of this problem can be written down. The derivation is given in Appendix I. 

Means the ratio of the field strength at the point P to the field 
strength of the incident wave. 

Means  the  ratio of the field strength at the point P if screen 11 is 
absent, to the field strength of the incident wave. 

Means the ratio of the field strength on screen I1 to the field 
strength of the incident wave (screen I1 has to be thought not to 
be present). 

UP I1 

uo 
- 

I - 
uo 

us - 
uo 
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The integration could not be carried out, but numerical approximations are 
possible (Appendix I, 4). 

Inspection of the integral reveals that integrand consists of a sine and cosine 
with rapidly decreasing amplitude. The oscillations of this sine and cosine a re  
very rapid because of the large value of kR (for 2000 Mc and 50 meters: kR = 

1800). 

In order to draw conclusions the formula should be evaluated numerically. 
It seems to be not too difficult to write an appropriate computer program for 
this purpose. A special case is interesting, e.g., if the edges of the two screens 
fall together, this would be a better representation of a mountain. If the two 
screens fall together, the diffraction pattern of one screen should result. 
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APPENDIX 
Derivation of Formula (7) 

HUYGENS' PRINCIPLE 

1. When the dimensions of the diffracting aperture become small compared 
to the wave length o r  even only a few times longer, Huygens' principle becomes 
meaningless. This is so, because then the boundary conditions play the dominant 
role. 

2. Huygens' principle is an approximation (but a very successful one). This 
is so, because this principle does not take into account the vectorial character 
of the electromagnetic wave and so the boundary conditions cannot be defined 
exactly. For the same reason polarization effects - as  a consequence of bound- 
ary conditions - cannot be evaluated with this principle. Huygens' principle 
operates with the quantities, designated by u or  V, representing scalar solutions 
of the wave equations. 

. 

3. Simplified formulation of Huygens' principle: (Sommerfeld, Lectures on 
Theoretical Physics, Vol. IV, Academic Press 1954, p. 199). 

The meaning of the symbols is shown in the figure below: 

SOURCE 
I 

P r' (POINT UNDER CONSIDERATION) 

k = 2 n / h  

In1 = 1 
u p s  fieldstrength 

20 
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Huygens’ principle for a plane screen: 

In words: A wave falling on the aperture D ,  propagates as if every element 
da emitted a spherical wave, the amplitude and phase of which are given by that 
of the incident wave u ,  the factor c o s  ( n r )  corresponds to Lambert’s law of sur- 
face brightness. 

Assumption: (1) Plane screen 

(2) kr >> 1 

THE SHIELDING OF A DIFFRACTED WAVE (p. 5) 

Let us  first consider the following arrangement of screens for a reason 
which will be pointed out at the end. We can use (1’) to evaluate the field on the 
right side of Screen 111. 

,0- - -\ 

R, 7,Z =0) 

cos (n ,  r )  = C O S  p = R(cos y) / r .  

Us /U, = the ratio of the field strength on the dotted line to the field strength 
of the incident wave (no screen III). 

1 / 2  
r = { ( y - R s i n  y ) 2  + (Rcos  y ) 2  t z2} = (R2 + y2 t z 2  - 2 y R s i n  Y ) ” ~  



. 
Substituting these values above in (1') yields for  screen 111: 

Up I I I  /Uo means the ratio of the field strength at the point P to the field 
strength of the incident wave (Uo ). 

U s / u 0  is a function of y only. 

Since the problem is cylindric, it is sufficient to evaluate U p  &J0 for  one 
particular (x, y)  plane. In our case this is the plane z = 0. 

But we are actually interested in the arrangement of screens as shown on 
page 18. 

Screens II and I11 should represent complementary screens. Then we can 
apply Babinet's principle: 

We are  interested only in the absolute value of UpII/uo : 

e x p  j k(R2 t y2 + z2 - 2yR s i n  y)"* 

R 2  t y 2  t z2 - 2 y R s i n  y 
d y  dz 

2 j  Rcos y 
UPI/UO 

y =  0 

2 j  Rcos 'Y e x p j k R ( 1  t ( Y / R ) ~  t ( ~ / R ) ~ - ( 2 y / R ) . s i n y ) ' / ~  d - d -  Y Z  

UP1 /uo x lo us/uo lo 1 t ( Y / R ) ~  t ( z / R ) ~  - 2(y/R) s i n  y R R  

(3 '1 . .  
Now substituting: y/R = z/R =; yields formula 7 (p. 18). The advantage of 
the calculation of UpI, /U0 via the complementary screen III consists in the fol- 
lowing: 

1. In the solution appears Up, /Uo and an additive term. This is convenient, 
since we want to compare our solution with UpI/Uo . 

22 



1. 

2. 

3. 

4. 

* 5. 

*6. 

7. 

8. 

9. 

10. 

11. 

12. 

REFERENCES 

Foos, Theoretical Physics, Hafner Publishing Company, 1950. 

Sommerfeld Lectures on Theoretical Physics, Volume IVY Optics Academic 
Press ,  1954. 

Dr. H. Bremmer, Terrestrial  Radio Waves Theory of Propagation, Elasvier 
Publishing Company, Amsterdam, New York, 1949. 

Frank-Mises, Bd 2, Auflage, Partielle Differentialgleichungen der  Physik, 
p. 844 (diffraction on straight edge). 

T. L. Eckersley and G. Millington, Phil. Trans. Roy. SOC., London, 1939, 
p. 273-309. 

J. R. Menzer, Scattering and Diffraction of Radio Waves, London, 1955. 

F. H. Dickson, J. W. Herbstreit, and G. S. Wickizer, Large Reductions of 
VHF Transmission Loss and Fading by the Presence of a Mountain Obstacle 
in Beyond-Line-of-Sight Paths, Proc. Inst. Radio Engineers 41, - 1953, 967- 
969. 

R. S. Kirby, H. T. Dougherty, and P. L. McQuate, OLstacle Gain Measure- 
ments over Pikes Peak at 60-1,046 Mc, Proc. Inst. Radio Engineers 43,  - 
1955, 1467-1472. 

H. T. Dougherty and L. J. Maloney, Application of Diffractions by Convex 
Surfaces to Irregular Terrain Situations, Radio Science, Journal of Research 
NBS/USNC-URSI, Volume 68D, No. 2, February 1964. 

H. E. J. Neugebauer and M. P. Bachinski, Diffraction by Smooth.Cylindrica1 
Mountains, Proc. IRE - 46, No. 9. 

H. E. J. Neugebauer and M. P. Bachinski, Diffraction by Smooth Conical 
Obstacles, Journal of Research, NBS D. Radiopropagation, Volume 64D, 
NO. 4 ,  July-August 1960. 

Handbuch der Physik, Flugge, Volume: Optic. 

* 
Not available in GSFC library. 

24 



2. Us /U, +) is essentially smaller than the values of Us /Uo along Screen 111. 
Us  /U, decreases with increasing y and the convergency* is perhaps improved. 
Besides Us /U, could be represented by a simpler analytical expression. 

u p o  = + J ( l / c o s  ((4 - a v 2 )  T l / cos  ((4 + a,/2)) 
4 (n-k 

- .  . . f i e l d  s t r e n g t h  parallel t o  edge .  

3. One could t ry  the approximation to substitute Us/U, by the largest value 
Us/U, and t r y  to evaluate the integrals. Would we have integrated along Screen 
11 and if we would do this, we would essentially get the known diffraction pattern 
of a half plane as screen. 

4. If we a re  not able to carry out the integration in (3') until infinity, but 
only to our finite value of y I yo, z 
following: instead of a half-plane as screen I1 we have then only a s t r i p  of screen 
as shown below: 

z 0' the physical interpretation of this is the 

INCIDENT WAVE 
h/v) 

w 
rr/u 

This solution is perhaps more of interest from the practical point of view 
than this of a half-plane. 

~~ 

"Along screen II *Of integral ( 5 )  
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